Landau levels

® Simplest case:“free” 2d electrons in a
magnetic field (applies to electrons in a
semiconductor 2DEG)

® Hamiltonian
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® Choose kyx eigenstate
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Landau levels

® One obtains
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Landau levels

® Energy levels = Landau levels are
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® FEach is highly degenerate due to
independence of energy on ky
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Landau levels

® Degeneracy
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2702 h

o
¥

® Flux quantum
p=h/e~4x 10T - m?

® This is basically the number of minimal
quantized cyclotron orbits which fit into
the sample area



Dirac Landau Levels

® VWe saw that Schrodinger electrons form
Landau levels with even spacing.

® |t turns out Dirac electrons also form
Landau levels but with different structure

® We can just follow the treatment in the
graphene RMP
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Dirac Landau levels



Dirac LLs




Dirac LLs
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Zero energy state: lives entirely on “A” sublattice sublaiee



Dirac LLs
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Relativistic vs NR LLs

A semiconductor 2DEG

is formed by doping

electrons into the

conduction band. E

Fermi in a
semiconductor
2DEG is usually

“high”

Fermi level is “in
O the middle” of Oth
LL in undoped
graphene

We/2

This is because there
are a lot of electrons in
graphene: 1 per C
atow, filling the
“negative” energy LLs




Edge states

® A simple way to understand the

quantization of Hall effect, realized by
Halperin

Consider Hall bar

|




Edge states K Wy)
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IfV(y) is slowly varying, then we can approximate

V(y) = V(kat?)
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Edge states

€n ~ hwe(n+ %) + V(k 07)
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Low energy states at the edges of the system



€n & hwe(n + ) + V(k 07)

® Near the edge, we can linearize the energy

ke = Ky + gy €n R E€F T UnQy

® This describes “right and left-moving chiral

fermions” = edge states
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Edge states

® Corresponds to semi-classical “skipping
orbits”

electrons can move along edge (conducting)

electrons localized in orbits (insulating)




